

Rectangular supply/exhaust air tower SP

Application

Air towers are designed for the supply and exhaust of air.

Description

- Possible air flow up to 30000 m3/h.
- Construction elements are joined together so as to reduce the possibility of corrosion to the minimum.
- The vane provides protection from external influences, such as rain, birds and large insects.
- The flange is always manufactured from rust-resistant sheet metal.
- · Uniform design of the end cap.

Installation

Air towers are installed with flanges on the concrete duct.

Definition of symbols

H Total height of the air tower
h1 Housing mantle height

h2 Vane height

A x B Nominal dimensions, as seen in the

A – A cross-section

Dimension limits

H The total height of the air tower is limited to 3000 mm

A x B Nominal dimensions are limited to a maximum of

1000 mm x 1000 mm and a minimum of 300 mm x 300 mm

Maximum speed limit

Speed limit in the housing mantle, $v_{_{\mathrm{SP}}}$:

Due to noise level and pressure drop, the speed is limited to vSP ≤10 m/s.

 $vSP \le Q / ((A-0.08)x(B-0.08)x3600) [m/s]$

Speed limits on the vanes, v_{FF} :

- · maximum vEF when supply 3 m/s
- · maximum vEF when exhaust 4 m/s
- optimal velocity is 2.8 m/s, in this case pressure drop < 60 Pa and small sound power level

Definition of symbols

v_{sp} [m/s] Speed in narrow part of housing

Q [m3/h] Air flow

A, B [m] Nominal dimensions

Number of vanes

The number of vanes n[/] depends on the nominal dimensions $A \times B$ [m], flow rate Q [m3/h] and speed on the vanes $v_{\rm FF}$ [m/s].

 $n = 1 + Q / (A_{VANE}^* v_{EF}) [/]$

where the surface of one vane

 $A_{VANF} = ((2*(A-0.08) + 2*(B-0.08)) * 0.04 * 0.694 [m2])$

The calculated number of vanes n is always rounded to the first whole value.

Calculation of the total height

H = h1 + h2 + 70 mm [mm]

where the height of vane part h2 depends on the number of vanes n.

h2 = n * 50 mm

A-A cross section

B-B cross section

Ordering key

